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The effect of surface roughness on the transition from regular (RR) to Mach reflection 
(MR) over straight wedges in pseudo-steady flows was investigated both experi- 
mentally and analytically. A model for predicting the RR*MR transition in the 
(Mi, Ow)-plane was developed (Mi is the incident shock wave Mach number and 8, 
is the reflecting wedge angle). Its validity was checked against experimental results. 
Since the experimental results are limited to the ranges 1 < Mi < 2 and surface 
roughness heights of 0 < e < 0.2 cm, the proposed model is applicable to these ranges 
only. In the proposed model (the boundary-layer displacement-thickness model), the 
RR $ MR transition is related to the boundary-layer thickness which in turn depends 
on the surface roughness. 

1. Introduction 
When a planar incident normal shock wave encounters a sharp corner in a shock 

tube, four different types of reflection can occur depending on the incident-shock- 
wave Mach number Mi and the wedge angle 8,. They are: (i) regular reflection, RR;  
(ii) single-Mach reflection, SMR ; (iii) complex-Mach reflection, CMR ; and (iv) 
double-Mach reflection, DMR. The latter three types are usually termed Mach 
reflections, MR. 

MR transition criterion in pseudo-steady flows (the ‘detachment 
criterion ’) was first introduced by von Neumann (1943). In  developing this criterion 
von Neumann assumed that (i) the flow is ideal, i.e. p = 0 and k = 0 (p is the dynamic 
viscosity and k the thermal conductivity); (ii) the flow is two-dimensional; and (iii) 
the flow is self-similar and hence pseudo-steady . 

As shown by Ben-Dor & Glass (1979), the detachment criterion can be expressed 
as follows : 

(1) 

where 8, is the flow deflection through the incident shock wave i, and 8,, is the 
maximum possible flow deflection through the reflected shock wave r. This formu- 

The RR 

el - eem = 0, 
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FIQIJRE 1.  The wave configuration of a regular reflection: i ,  incident shock wave; r ,  reflected shock 
wave; a, reflection point; u,, velocity of the incident shock wave in the laboratory frame of 
reference; V ,  velocity of the flow in a frame of reference moving with point G; Ow, reflecting wedge 
angle; q5, angle of incidence; 8, flow deflection angle; (0)-(2), thermodynamic flow states. 

lation is based on the fact that when the frame of reference is attached to the reflection 
point G (figure 1) the flow ahead of the incident shock wave i, which now moves 
parallel to the wedge surface at supersonic velocity V, = u,/cos 8, (ui is the incident 
shock wave velocity), is deflected towards the solid wedge surface by an angle 8,. In 
order to negotiate the solid surface it must experience a redeflection while crossing 
the reflected shock wave r to become parallel again to the wedge surface. When the 
angle exceeds the maximum deflection angle Bzm, the regular reflection becomes 
theoretically impossible. Consequently (i) represents the ‘detachment ’ criterion of 
von Neumann. However, the experimental findings of Smith (1945), Taub (1947), 
Bleakney & Taub (1949), Fletcher (1950), White (1951), Law (1970), Henderson & 
Lozzi (1975), Hornung & Taylor (1982), Ben-Dor & Glass (1979) and Henderson & 
Woolmington (1983) indicate that the RR exists beyond the predicted theoretical 
limit of the ‘detachment ’ criterion. 

Since the von Neumann paradox was first noticed (see von Neumann 1963) many 
scientists such as Ben-Dor & Glass (1979), Hornung & Taylor (1982), Henderson & 
Woolmington (1983) directed their efforts at resolving this paradox. Probably the most 
promising approach was the one suggested by Hornung & Taylor (1982) who argued 
that the reason for the existence of the von Neumann paradox is the fact that the 
transition line was derived by solving the inviscid-flow conservation equations 
whereas the actual flow is viscous. Consequently, they concluded that by accounting 
for viscous effects the von Neumann paradox could be resolved. In their work they 
accounted for the viscous effects by applying ’ the boundary-layer displacement- 
thickness concept. Their obtained results justified their approach. 
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Takayama, Ben-Dor & Gotoh (1981) presented experimental results regarding the 
R R e M R  transition over rough surfaces. Their results are reproduced in figure 2. 
The difference between the actual transition and that predicted by the detachment 
criterion (solid line) is quite clear. This difference increases as the roughness height 
increases. For example, at Mi = 4 and E = 0.2 cm, the actual wedge angle at which 
the R R e M R  transition occurs is about 20' lower than that predicted by the 
'detachment ' criterion. 

The fact that the surface roughness has such a meaningful influence on the 
transition wedge angle on one hand, and the fact that shock reflections, in nature, 
occur over rough surfaces on the other hand, has led to the recognition that 
understanding the reflection process over rough surfaces is of great importance. 
Consequently, a model capable of predicting the RR*MR transition over rough 
surfaces was sought. 

Based on the foregoing discussion, the R R e M R  transition process was investi- 
gated both experimentally and analytically. Since Hornung & Taylor (1982) were 
able to explain the von Neumann paradox by including viscous effects in their 
solution of the flow field, it was decided to adopt their approach for predicting the 
RR * MR transition over rough surfaces as well. 
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FIGURE 3. (a) Schematic illustration of the type of roughness used in the experimental study. 
( b )  The test section and the adjustable wedge model. 
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2. Experimental results 
The experimental results reported here were obtained using the 40 x 80 mm shock 

tube of the Institute of High Speed Mechanics, Tohoku University, Sendai, Japan. 
The ‘ saw-tooth ’ roughness imposed on the tested wedge models is illustrated in figure 
3(a). For the first set of experiments four models (each 4 cm long) with roughness 
of E = 0.01,0.02,0.08 and 0.2 cm were prepared. The wedge angle of the models could 
be adjusted from outside the shock-tube test section as shown in figure 3(b). The 
experimental study covered the range 1 < Mi < 4. 

The shock-wave velocity was measured using Kistler 606 pressure transducers, an 
Iwatsu UC7641 digital counter and an Iwatsu DM901 recorder. The pressure 
transducers were mounted 120mm apart just ahead of the test section. The 
attenuation of the incident shock wave was found to be negligibly small. 

The gas was pure nitrogen. The initial pressures were in the range 3 < P, < 50 Torr. 
For all the experiments the initial temperature was about T, = 300 K. For the 
investigated range of shock-wave Mach numbers (1 < Mi < 4) the nitrogen can be 
assumed to behave as a perfect gas. 

An optical diagnostic (shadowgraph) was used for studying the pseudo-steady 
reflection phenomenon. A pulsed ruby laser (6493 A) was used as a light source. 

The RR e MR transition angle was determined in the following way. For a given 
value of the incident-shock-wave Mach number Mi the wedge angle 8, was gradually 
increased until an RR was obtained. Then, the value of the triple-point trajectory 
angle x (deduced from the shadowgraphs) was plotted in the (x,Ow)-plane. The 
experimental results were then linearly extrapolated to x = 0. The wedge angle at 
this point was chosen as the transition wedge angle @:. This procedure yields values 
of @: to an accuracy of f l” .  The above-mentioned procedure was repeated for 
Mi = 1.04, 1.12, 1.21, 1.44, 1.96, 3.58, 3.77 and 3.89. The experimental results 
obtained for the four different models, as well as the results obtained for a ‘smooth’ 
model, are shown in figure 2. 

It is apparent that the surface roughness E has a significant influence on the 
RR + MR transition wedge angle for any given incident-shock-wave Mach number. 
The greater E is, the smaller is the transition wedge angle @:. It is of interest to note 
that the measured transition wedge angles over the smooth-surface model do not 
agree with the ‘detachment’ criterion (these results confirm the von Neumann 
paradox). Had the surface been perfectly smooth, i.e. e = O ,  and the flow truly 
inviscid, the experimental results should have agreed with the ‘detachment’ 
criterion. However, since no surface is perfectly smooth, and since no flow is truly 
inviscid, the vonNeumann paradox exists. In  the following we shall refer to a 
‘smooth ’ surface as hydraulically smooth. As shown in the Appendix, a hydraulically 
smooth surface is one for which E < 0.005 17 cm. 

3. Analysis 
As mentioned previously the aim of the present study is to develop a model capable 

of predicting the RR + MR transition over rough surfaces, i.e. a model that will shift 
the ‘detachment’ transition line (solid line in figure 2) towards the experimental 
results for any given roughness height E .  



338 G. Ben-Dor, G.  Mazor, K .  Takayama and 0. Igra 

3.1. General assumptions 
(i) The flow is two-dimensional; (ii) the flow field can be described by the mass, 
momentum and energy conservation equations of inviscid flows with additional terms 
accounting for viscous effects; (iii) the flow is self-similar, and hence can be made 
pseudo-steady by applying the well-known Galilean transformation; and (iv) real-gas 
effects can be ignored, consequently the gas is assumed to obey the equation of state 
of perfect gas (i.e. P = pRT). 

3.2. The conservation equations 
The wave configuration of an RR is shown schematically in figure 1.  Employing the 
foregoing assumptions, and attaching the frame of reference to the reflection point 
G (in such a way that it moves along the wedge surface together with point G) results 
in the following nine equations which completely describe the flow field in the vicinity 
of the reflection point G. Across the incident shock wave i : 

continuity Po v, sin 4, = p1 vl sin (4, - 8,) ; (2) 

tangential momentum po tan $, = p1 tan ($, - 8,) ; (3) 

normal momentum Po +po sin2 $, = 4 +pl q sin2 (4, - 8,) ; (4) 

energy h,+!jVi sin2$, = hl++Vt sin2($,-8,). ( 5 )  

Across the reflected shock wave r: 

continuity p1 V, sin $1 = p2 V2 sin ($1 - 8,) ; (6) 

tangential momentum p1 tan dl = p2 tan (9, - 8,) ; (7) 

normal momentum c + p l q  sin2& = e+p2v; sin2($1-82); 

energy h l + + q  sin2$, = h2++V: sin2($,-8,). 

The boundary condition for the RR + MR transition: 

8, - 8, = 7. ( 1 0 4  

Recalling that a t  the transition from RR to MR, 8, reaches its maximum value, 
O,,, (10a) should read 

81-82, = Y ( l o b )  

or alternatively 1-8""=L=F 8, 8, 7 -  (104 

Setting y = 0 results in the well-known set of equations describing a regular 
reflection in an inviscid flow (Ben-Dor 1978). The solution of these equations, which 
yields the 'detachment ' transition line (shown in figure a), can be found in Ben-Dor's 
(1978) report. Note that V, = ui/cos8,, 4, = 90°-8,, Po and T, are known. The 
enthalpy h is related to the temperature through h = C, T and the density p can be 
calculated from the equation of state for a perfect gas, i.e. p = F/RT. The definitions 
of #,, $1, el and e2 are shown in figure 1.  

However, in reality no flow is perfectly inviscid. Consequently, as the flow 
negotiates a solid surface i t  develops a boundary layer inside which viscous effects 
are dominant and must be accounted for. 

One technique of overcoming this difficulty is by 'displacing' the solid boundary 
over which the fluid flows and still using the conservation equations for an inviscid 
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flow over the displaced wall. The procedure is shown schematically in figure 4. Figure 
4(a)  illustrates the actual velocity profile of a flow over a flat plate. At y > 6 the 
velocity is uniform and equal to u,. As the flow approaches the plate surface, the 
velocity decreases. At  y = 0,  the flow velocity is equal to the plate velocity, which 
is zero for this case. Figure 4 ( b )  illustrates a uniform flow of velocity u,  over a 
boundary which is displaced by a*. The mass flow for the two cases shown in figure. 
4(a, b) is identical. 

The situation is somewhat different for the pseudo-steady case. Figure 4(c) 
illustrates the actual velocity profile of the flow induced by the normal shock wave 
which propagates from left to right at a constant speed ui into a quiescent flow, i.e. 
u,, = 0. A t  y 2 6 the induced flow velocity is u1 and it reduces to zero on the plate. 
By considering the flow from a frame of reference attached to the shock wave, i.e. 
performing a Galilean transformation on the entire velocity field, the flow profile 
illustrated in figure 4 ( d )  is obtained. A t  y > 6 the flow velocity is V, = ui-u,. As the 
flow approaches the plate surface its velocity increases until it reaches the plate 
velocity ui at y = 0. In order to have a uniform flow of velocity V, with the same 
mass flow as that of figure 4(d) ,  the boundary has to be displaced downwards, as 
shown in figure 4(e) .  Thus in this case the boundary displacement thickness 6* is 
negative. 

Applying this technique to the regular reflection shown in figure 5 (a)  results in the 
regular reflection shown in figure 5 ( b ) .  One can either solve the problem shown in 
figure 5 ( a )  while accounting for viscous effects in regions (2) and requiring 
8, - O2 = 0, or alternatively use inviscid-flow equations and solve for the displaced 
geometry shown in figure 5 ( b ) .  In  this case, it is clear that 8,-02 = y + 0. The value 
of y appearing in the last expression can be obtained from the boundary displacement 
thickness 6* which in turn can be obtained from the boundary-layer thickness 6. The 
procedure for obtaining y is outlined in the following. 

3.3. The roughness effect on the turbulent f i w  
Usually, surfaces over which fluids flow cannot be considered as perfectly smooth. 
Experiments have indicated that the roughness height 8 significantly contributes to 
the friction coefficient f. Thus it is necessary to develop a model that will relate the 
friction coefficient f to the roughness height s. 

Blasius (in Schlichting 1962) showed experimentally that for hydraulically smooth 
pipes the friction coefficient f depends solely on the Reynolds number Re. Hopf (1923) 
found experimentally that for very rough pipes the friction coefficient f depends solely 
on the relative roughness s / R  ( R  is the pipe radius). Furthermore, he showed that 
for less rough pipes f depends on both Re and € / R .  These experimental findings 
suggested that f is controlled by the thickness of the laminar sublayer 8,. Their 
conclusion was that the dominant factor in determining the value of the friction 
coefficient f is e/ltL. When 8 < 6, (i.e. the surface roughness is completely immersed 
inside the laminar sublayer) the roughness has practically no effect on f, and the 
surface can be considered as ‘hydraulically smooth’. On the other hand, for E % 6, 
the roughness has a dominant effect on f. In such a case the friction mechanism is 
known as ‘wave drag’ (Shames 1982). It was further shown by Schlichting (1962) 
that for any given size of roughness, V .  SL/v = C,, where C,  is a constant, V, is the 
shear velocity and v is the kinematic viscosity. This finding leads to the following 
relation : 

8 1 €V* 

6, Cl v ’ 

_ -  
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FIGURE 5. The flow field associated with a regular reflection over a wedge in a pseudo-steady flow. 
(a) Viscous flow over the real surface. Note, a boundary layer is developed in state (2). ( b )  Inviscid 
flow over the displaced surface. 

It is clear from this relation that E VJv can replace €/aL and therefore be considered 

Based on the experimental results of Nikuradse (1933) it is a common practice to 

(i) hydraulically smooth flow 

as the dominant factor in determining the value of the friction coefficient. 

divide the turbulent flow over rough surfaces into three flow zones (Shames 1982): 

E fz v* 
6, V 
-< 1 or -< 5 where f =  f (Re);  

(ii) frictional transition flow 

1 < - < 1 5  E or 5 < - < 7 0  v* where f = f  
8, V 
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(iii) rough flow 
E E v* - > 1 5  or - > 7 0  where f = f  

8, V 

Once the turbulent character of the flow is defined it is important to correlate the 
roughness and the friction losses. As a basis for constructing such correlations the 
following logarithmic velocity distribution law is used (Shames 1982, pp. 322-324) : 

where U is the time-averaged velocity, a is a universal constant, y is the distance 
coordinate measured from the surface and /3 is a constant depending on the roughness 
height E .  The assumptions under which the logarithmic velocity distribution law waa 
obtained are given by Prandtl (1925). A detailed derivation of (12) can be found in 
Shames (1982). 

It is important to note here that (12) was developed by Blasius for a flat plate 
(Shames 1982, pp. 322-323). However, in Shames’ words ‘experimental evidence 
indicates that we have the happy situation that not only is the relation above good 
in the expected region of two dimensional flow but also it is valid throughout the 
three dimensional symmetric flow in a pipe.. . . This relation shows excellent agree- 
ment with pipe flow data’. Consequently, it is a common practice to adopt corre- 
lations which were developed for boundary layers over flat plates as appropriate for 
pipe flows while considering y as the radial distance from the pipe wall and replacing 
half the distance between two parallel plates by the radius of the pipe R. Similarly, 
this procedure is also used in the opposite direction, i.e. expressions which were 
developed for pipe flows are used for flat plates by replacing the above-mentioned 
parameters. For example, Blasius (Shames 1982, p. 383) found that for a pipe flow 

Schultz-Grunow (Shames 1982, p. 383) later confirmed that this correlation is valid 
for flat plates also. The fact that the correlations for pipe flows and flows over flat 
plates are similar is known as the Blasius analogy. In the following the Blasius 
analogy is adopted ; therefore, correlations which were originally developed for pipe 
flows are used for flat plates. A comparison between the experimental results of 
Nikuradse (1933) and (12) indicates that (i) for a large range of Reynolds numbers 
and roughness heights, a = 0.417 (Shames 1982, p. 323); (ii) for a hydraulically 
smooth flow 

for the frictional transition flow 
ln/3 = -2.2, (13) 

-2.2 < In/? < 0.8, 

E v* h/3 = --3.4. 

(14) 

(15) 

Based on these values of a and /3 expressions for evaluating the friction coefficient 
f for flat plates were derived for each of the three flow zones. In order not to limit 
the present results to any specific flow zone a different analytical approach, outlined 
below, is taken in the present study. 

and for the rough flow v 
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Flat plate A 
Laminar sublayer 

FIGURE 6. Schematical illustration of the laminar sublayer inside the turbulent boundary layer. 
The velocity profile inside the laminar sublayer is linearly changing from u = 0 at y = 0 to u = uL 
aty=6, .  

Inserting the boundary condition ult/-dL = uL (figure 6) info (12) yields 

In the laminar sublayer the velocity changes linearly (Shames 1982, p. 325) : 

where 7, is the shear stress on the surface. Inserting the relation VZ, = 7,/p into (17) 
results in 

Combining (16) and (18) yields 

1 
a 

G = - (In G- In/?), 

where G is defined as G = V, 8,Iv. For a = 0.417 (19) reduces to 

G = 2.398 (lnG-lnp). (20) 

Since /9 depends solely on the roughness height 6, it is obvious from (20) that so does 
G, i.e. for any given value of 6, the value of G is independent of the flow properties. 
It is therefore suggested that G is called the ‘roughness characterizer’ and it should 
be noted that G = V, d,/v is simply the common Reynolds number in the usual form 
applicable to the inner layer. The laminar-sublayer thickness 8, is fundamental in 
the evaluation of G. Indeed, G does characterize the roughness effects, but should 
more properly be viewed aa the ratio of the two lengthscales; 8, and a viscous length 

For assessing the value of G associated with hydraulically smooth surfaces, Blasius’ 
v/ v** 



344 G. Ben-Dor, G. Mazor, K .  Takayama and 0. Igra 

E rcm1 G 
0 OD 

c 0.00517 12.2468 
0.01 6.3848 
0.02 3.4845 
0.08 1.0401 
0.20 0.4750 

TABLE 1. The dependence of G on E in the range 1 < Mi c 2 

results can be used. Blasius (in Schlichting 1962) found that the friction coefficient 
for the case considered is given by 

f = 0.3164 Re;+, (21 1 
where Re, = uaV D/v. Equation (21), which is known as the Blasius equation, was 
derived for the following specific velocity profile : 

For a general velocity profile, 
n - -=(;), U 

UO 

(21) can be generalized to the following form: 

f = C(n, G) Re-2nln+1. (24) 
In this relation the velocity power exponent n depends solely on the Reynolds 

(25) 
Inserting n = 3 into (25) and recalling that for this value of n C(+, G) = 0.3164 [see 

(21)] yields, for a hydraulically smooth surface, G = 12.2468. Using this value of G 
in (20) implies that for a hydraulically smooth surface lna  = -2.39. This value of 
lnp  is about 8% smaller than the value usually quoted in the literature [equation 

The value of the roughness characterizer G for a frictional transition flow can be 
determined from (20). As mentioned earlier, for a frictional transition flow 
-2.2 Q lnb  < 0.8 [equation (14)], thus by inserting lnp  = 0.8 into (20) the lower 
value of G for a frictional transition flow can be obtained. Following this procedure 
one obtains: for the hydraulically smooth flow G = 12.2468; for the frictional 
transition flow 0.5625 < G < 12.2468; for the rough flow 0 < G < 0.5625. 

Mazor (1984) developed a method by which the roughness characterizer G can be 
calculated as a function of the surface roughness E. The values of G for the values 
of E used in the present study are shown in table 1.  A fitted curve to these tabulated 

number. Mazor (1984) showed that C(n, G) has the following form : 

C(n, G) = (Z5"+'[(n + 1 )  (n+2)I2 G2(n-1)}1/n+1. 

(13)i. 

values yields 

It is worthwhile noting that this expression complies with the physical requirement 
that the value of the shear stress 7, increases as the roughness height E increases. 
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Note also that for a perfectly smooth surface (8  = 0), (26) results in G+ co and from 
(29) one obtains for this case 7,+0 as expected. 

In the following, the boundary layer developing behind the reflection point of the 
regular reflection shown in figure 5 (a) will be developed. 

3.4. The boundary-layer thickness 
The origin of the coordinate system is moving with the reflection point G along the 
wedge at a constant velocity V, = UJCOS 0, (ui is the incident shock wave velocity in 
the laboratory frame of reference and Ow is the wedge angle, see figure 1). In this frame 
of reference the flow in state (0) is moving towards the incident shock wave (which 
is now stationary) with a velocity V, (the angle of incidence between this flow 
and the shock wave is $o = 90"-0,). The wall, which in a laboratory frame of 
reference is at  rest, is also moving now with the velocity u, = V,. The flow in state 
(2), which initially had an induced velocity uz(y), is now moving with the velocity 
V,(y) = [ui-u2(y)]/cos8,. Therefore, in the considered frame of reference S should 
be calculated for a flow velocity V,(y) over a moving flat plate having a velocity V, 
in the same direction as V,(y). 

For turbulent incompressible boundary flows two different approaches are fre- 
quently used (both are semi-empirical) : they are the mixing length of Prandtl and the 
von Karman momentum integral (see Shames 1982, p. 368). Since similar semi- 
empirical approaches are not available for compressible, turbulent boundary-layer 
flows, it was suggested by Eckert (1954) and Mirels (1956) that the approaches 
proposed for incompresible flows should be adopted and adjusted to account for 
compressibility effects. A similar approach is adopted in the present study. 

Prior to adjusting these approaches to the compressible case, the differences 
between the incompressible and the compressible cases should be understood. While 
in the former the velocity and thermal boundary layers can be considered separately, 
in the latter they are coupled because at high flow velocities the heat generated by 
friction and the temperature changes due to compressibility must be accounted for. 
Consequently, in the compressible case the following factors must be considered: 
(i) the Mach number; (ii) the Prandtl number; (iii) the viscosity dependence on 
temperature; and (iv) the heat transfer from the flow to the solid surface. 

The major assumptions upon which the present model is developed are: (i) the gas 
behaves as a perfect gas; (ii) the flow is pseudo-steady and two-dimensional; (iii) the 
boundary layer is turbulent from x = 0 where x is meaaured from the reflection point 
G. This assumption is reasonable because (a) the Re number is very high; therefore, 
the boundary layer is laminar for a short distance only (Martin 1957), and (b )  
Schlichting (1962) ihowed that the surface roughness decreases the value of the 
critical Reynolds number for transition from laminar to turbulent flow; (iv) the 
gravitational forces can be neglected; (v) the pressure is constant throughout 
the entire field, i.e. aP/ax = 0 and aP/ay = 0; and (vi) Blasius' semi-empirical results 
for the wall shear stress 7, in incompressible flows are applicable when the average 
temperature T, is used. 

In the following an expression for the wall shear stress in a compressible viscous 
flow over a moving rough flat plate is developed. The shear stress for an incompressible 
viscous flow over a rough stationary flat plate is (Mazor 1984) 
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where um and pm are the flow velocity and density outside the boundary layer, G is 
the roughness characterizer G = V,, S,/v, and 

Inserting n = f and G = 12.2468 (the value calculated previously for hydraulically 
smooth surfaces) into (27) yields 

- 7w = 0.0233~2, Re-!. 
Po3 

The fact that this is only 3.4 % larger than Blasius’ expression for incompressible flows 
over a smooth plate, i.e. 

- 7w = 0.0225~2, Re-!, 
Po3 

clearly indicates the validity of (27). 

for the average temperature inside the boundary layer, Tm. Consequently 
In order to apply (27) to a compressible flow, the flow properties must be calculated 

(28) -- ‘W - u2 o3 G2(n-l)/n+l V, Synlntl. 
Pm 

A similar approach was adopted by Tucker (1951), Eckert (1954), Bartz (1955) and 

and assumption (v), i.e. P, = Pm in (28) results in 
Mirels (1956). Using vm = Pm/pm, V, = Pm/pm, Pm = Pm/(RTm), P m  = P,/(RTm) 

where 

Equation (29) differs, as expected, from (27) by the term Q which accounts for the 
fact that the flow is compressible. In order to calculate Q, appropriate expressions 
for pm and Tm are required. 

For non-polar diatomic gases, Mazor, Ben-Dor & Igra (1985) suggested 
0.64874 

PO 

therefore 
0.64874 

PO 

Inserting this relation into (30) yields 

Eckert (1954) showed that Tm can be approximated by 

Tm = 0.5(Tw-T,)+0.22(T,-T,), (33) 

where T,, T, and T, are the wall, the free-stream and the recovery temperatures 
respectively. 
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The recovery temperature T, (which is equal to the wall temperature for the case 
when there is no heat transfer) can be calculated from (Schlichting 1962): 

where u, and u, are the wall and free-stream velocities respectively, Pr is the Prandtl 
number (calculated a t  z) and C, is the specific heat capacity at constant pressure 
(calculated at T,) . 

Mirels (1956) showed that (33) and (34) can be combined to give 

5.563-0.28[1+(2,”] ua? 
_-  Tm - 
*m 6-- uw 1 

Urn 

Inserting (35) into (32) results in 

(35) 

i-s.ro7anln+i 

(36) 

6%- 1 
Q=[ 

5.565-0.28[1+(2y] Urn 

As previously mentioned, in the present case the frame of reference is attached to 
the reflection point G (see figure 1); thus u, = V,, u, = V,, pa = p2 and v, = v2. 
Inserting these terms into (29) and (36) results in 

and 

Equation (37) expresses the wall shear stress for a compressible flow over a rough 
flat plate. The compressibility is acounted for through Q and the roughness is 
accounted for through G. One additional correction is required in order to use (37) 
and (38) for the problem at hand; i.e. to account for the fact that in the present case 
the flat plate is not stationary. This can easily be done by replacing V, in (37), by 
the relative velocity between the flow and the surface, V,- V,. Carrying out this 
transformation finally results in 

Inserting the velocity profile, (23), and the wall shear stress, (39), into von 
Ktirmtin’s momentum integral for the case of zero pressure gradient, i.e. aP/ax = 0 
(see Schlichting 1962) 

FLM 176 
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where Re, = IV2- v,lx 
v2 

Equation (40) describes the boundary-layer thickness for a compressible flow over 
a rough moving flat plate. 

In the special case of an incompressible flow, Tm/T, = 1, over a smooth plate, 
G = 12.2468, when n = f ,  (40) reduces to 

6 
- = 0.3816 Re;). 
2 

The expression found in the literature for this case is (see Schlichting 1962) 

8 
- = 0.376 Re$. 
2 

The small difference between these two expressions (about 1.5 %) again verifies the 
validity of the present approach. 

3.5. The boundary-layer displacement thickness S* 
The boundary-layer displacement thickness S* can be calculated from (Schlichting 
1962) 

Inserting the velocity 
integration, results in 

profile, (23), into the above equation and carrying out the 

S* = , - (n+l -g) .  1 
n+ 1 

Inserting (40) into (41) finally yields 

where 
1 (3n+ 1)  (2n+ 1) n+1/3fl+1 

C = - [  n + l  n 1 (43) 

Equation (42) describes the boundary -layer displacement thickness for a com- 
pressible flow over a rough surface of a flat plate which moves with the velocity V, 
relative to the free-stream velocity V,. The plate roughness is accounted for by G and 
the compressibility of the flow by the term T,/%; n, the velocity-profile exponent, 
depends solely on the Reynolds number. Checking for the well-known case of an 
incompressible flow over a hydraulically smooth plate, i.e. setting Tm/T, = 1,  
G = 12.2468 and using n = f results in 

S* 
- = 0.049 Re;). 
2 

The appropriate expression in the literature is S*/x  = 0.047 Re;). The small difference 
between these two expressions again verifies the validity of the approach of the 
present study. 
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Po (Tom) 

FIQIJRE 7. The dependence of the mean free path A ,  and (xehar)min 
on the initial pre'kure Po. 

3.6. The angle y 
Once the displaced geometry is available, the question of how to determine the value 
of y (equation (10)) arises. Intuitively, one might suggest the use of the slope of the 
displaced boundary a t  x = 0, i.e. 

However, inserting (42) into the last expression results in the non-physical value of 
y = 90'. Consequently, it was suggested by Shirouzu & Glass (1982) that either 

or (45) 

be used to calculate the value of y. While their former expression defines y as the 
slope of the displaced boundary at 2 = xchar, the latter defines y as the average slope 
of the displaced boundary at x = zchsr. The characteristic length %char has also been 
discussed by Shirouzu & Glass (1982). As will be shown subsequently, the present 
study indicates that 

where A, the mean free path of the flow ahead of the incident shock wave can be 
obtained from 

8A < xchar < 10h, (46) 

P,(Tom) 6.6 x cm. A =  
760 (47) 

12-2 
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The value of h as a function of the initial pressure is illustrated in figure 7. The 
additional two lines in figure 7 stand for (xchar)min = 8A and (xchar)max = 10h. Thus, 
figure 7 enables one to select the appropriate value of xchar for any given initial 
pressure Po. 

The foregoing discussion concludes the present model for calculating the 
RR * MR transition wedge angle over rough surfaces. The procedure for using the 
present model is as follows: calculate the value of h using (47); calculate the value 
of Xchar using (46); calculate the value of y using (45) and (42); solve (2)-(10) 
for the above-obtained value of y.  

4. Evaluation of the experimental results and verification of the present 
model 

A list of the experiments evaluated in the following discussion is given in table 2. 
The surface roughness E (in cm), the incident-shock-wave Mach number Mi, and the 
value of the wedge angle @: at which the RR * MR transition was observed are given 
in columns 2, 3 and 4 respectively. Column 5 lists the flow deflection angle O1 while 
passing through the incident shock wave. This information for each experiment wm 
then used in the following way. Equations (2)-(10) were solved for each case. The 
value of y was then varied using a Newton-Raphson iteration until the solution 
resulted in a value of @: that agreed with the measured value (shown in column 4) 
to within 0.1 %. The obtained values of y for all the experiments are shown in column 
6 of table 2. The value of y for experiment 16 is negative and hence this experiment 
should be considered as doubtful. Note that in figure 9 this experimental point lies 
above the detachment-criterion transition line, a fact sufficient to discard this point 
on the basis of a possible experimental error. In-column 7 of table 2 the ratio y/Ol 
is listed for all the remaining experimental points. The numerical results clearly 
indicate that for a given value of surface roughness B ,  the value of y/Ol is practically 
independent of the incident-shock-wave Mach number Mi. The only clear discrepancy 
in this seems to occur for the experiments with high incident-shock-wave Mach 
numbers, i.e. experiments 11,21,22,31 and 41 ; the values of Mi for these experiments 
are 3.99, 3.86, 3.70, 3.83 and 3.94 respectively. 

A possible explanation for this behaviour might be the following. For incident 
shock waves in the range Mi < 2.068, the shock-induced flow is subsonic, while for 
Mi > 2.068, the shock-induced flow is supersonic. It is most likely that for large 
values of surface roughness the interaction between the induced supersonic flow 
introduces a mechanism that has not been considered in the foregoing model. It is 
also possible that at the higher value of Mi, real-gas effects such as vibration and 
dissociation which are ignored in the present model should be accounted for. 

Thus, discarding the experiments with the high incident-shock-wave Mach num- 
bers i.e. limiting the following discussion to the range Mi < 2, and averaging the 
values of y/O1 for every set of valid experiments with the same surface roughness, 
results in the values shown in table 3. The value of Fy w8.e are shown in figure 8 
together with the following two fitted curves: 

Fy = -889.9~~+48.7s-0.078 (0.00517 < B < 0.02 cm), (484  

Ii; = -4.17e2+3.08~+0.48 (0.02 < 8 < 0.2 cm). (48b) 

For surface roughness smaller than E = 0.005 17 cm, which is the value appropriate 



Transition from regular to Mach rejection 35 1 

EXP 
no. 
1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

15 
16 

25 
26 

35 
36 

44 
45 

(cm) 
2 

< 0.005 

0.01 

0.02 

0.08 

0.20 

Mi 
3 

2.48 
2.14 
1.76 
1.52 
1.36 
1.26 
1.17 
1.10 
1.04 

fj 
[ 
[!j 
p::; 1.21 

1.12 

3.94 

1.11 

@,. ["I 
4 

47.58 
48.63 
49.11 
47.62 
45.52 
43.35 
39.56 
34.27 
25.85 
44.80 
45.56 
43.59 
40.69 
35.16 
25.40 
42.14 
42.34 
41.53 
41.81 
37.10 
32.66 
40.32 
39.45 
37.18 
34.15 
28.59 
24.27 
33.51 
32.18 
31.49 
30.04 
25.04 

8, ["I Y ["I 
5 6 

26.99 4.32 
24.34 3.16 
20.23 1.82 
16.62 1.99 
13.38 2.01 
10.35 1.66 
7.16 1.29 
4.29 1.07 
1.38 0.21 

32.76 8.85 
22.79 7.75 
15.90 6.04 
9.02 2.98 
4.50 1.22 
0.80 - 0.104 

34.04 13.62 
33.64 13.46 
24.42 13.19 
16.09 8.05 
8.63 4.75 
4.86 2.77 

34.93 16.77 
24.86 16.41 
16.33 12.08 
8.73 6.37 
4.55 3.64 
1.54 0.83 

38.09 28.19 
25.11 23.35 
15.49 14.56 
8.09 7.28 
4.05 3.77 

F =r 
7 

0.16 
0.13 
0.09 
0.12 
0.15 
0.16 
0.18 
0.25 
0.15 
0.27 
0.34 
0.38 
0.33 
0.27 

0.40 
0.40 
0.54 
0.50 
0.55 
0.57 
0.48 
0.66 
0.74 
0.73 
0.80 
0.54 
0.74 
0.93 
0.94 
0.90 
0.93 

8, 

- 

h 
8 

9.6 
9.1 
8.6 
9. 1 
9.0 
9.2 
9.5 
9.2 
9.0 
8.5 
9.0 
9.7 
8.8 
8.7 

6.9 
7.1 
8.6 
9.2 
8.9 
9.1 
7.0 
8.4 
9.2 
9.6 
8.9 
8.8 
7.0 
8.4 
9.0 
9.1 
9.6 

- 

TABLE 2. Experimental data and evaluation 

to a hydraulically smooth surface (see the Appendix), Fy = 0.15. The value of Fy = 0 
results in the well known 'detachment criterion'. 

Column 8 in table 2 was obtained using the following procedure. For each 
experiment, (45) was solved by changing the value of qhsr  until satisfactory 
agreement was obtained with the value of y shown in column 6. Then ZChar was 
divided by the mean free path A. The obtained results indicate, as can be seen in table 
2, that 

gG2char G 10. 
A 

It is of interest to note that the thickness of the incident shock wave i is about ten 
times the mean free path. Consequently, the above results indicate that 

Xchar li, 



352 G. Ben-Dor, Q. Mazor, K .  Takayama and 0. lqra 

[cml 
< 0.00517 

0.01 
0.02 
0.08 
0.20 

0.15 
0.32 
0.54 
0.70 
0.93 

TABLE 3. Fy m. E for the range 1 < Mi < 2 

I I I I I I I I I 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 

FIGURE 8. The present correlations of Fy m. E for 0 < 6 d 0.2 cm. 

E (cm) 

where li is the thickness of the incident shock wave. Thus, the incidence-shock-wave 
thickness is probably the characteristic length for the problem at hand. 

The experimental data points (see details in table 2) are plotted in figure 9 in the 
(Mi,@g)-plane. The six solid curves in figure 9 are obtained from the solution of 
equations (2)-(10) using Fy = 0, 0.15, 0.32, 0.54, 0.70, 0.93, which were found to 
be the average values of Fy in the range 1 < Mi < 2 for 8 = 0,O < E < 0.00517, and 
E = 0.01, 0.02, 0.08, 0.2 cm, respectively (see table 3 for details). 

It is clear from figure 9 that the agreement between the prediction of the present 
model and the experimental results is good in the range 1 < Mi < 2. As the value 
of the incident-shock-wave Mach number increases, the agreement between the 
theory and the experiments becomes progressively worse. 

5. Application of the present model 
The foregoing discussion suggests two possible methods for analytically calculating 

the R R G ~ M R  transition wedge angle over rough surfaces. The two methods are 
outlined in the following. 
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I I F,=O 

(Hydraulically smooth) E = rn Q 0.005 17 cm 
0 = 0.01 cm 
A = 0.02 cm 

= 0.08 cm 
o = O.?O cm I I 

- 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
- Po 
P. 

1.0 1.05 1.101.151.20 1.30 1.401.50 1.70 2.02.303.04.00~ 

FIGURE 9. The experimental results aa well aa the prediction of the preeent model for the 
4 

RR* MR transition over rough wedges. 

(i) For a given set of initial conditions, i.e. initial pressure 8, initial temperature 
T, and the incident-shock-wave Mach number Mi one first has to  calculate the flow 
properties of state (2) behind the reflected shock wave at ‘detachment ’. Then, using 
these dlow properties together with the roughness size 6 for the given experiment, the 
displacement angle y can be calculated from (45) when zChar = (8+ l0 )h .  Once y is 
obtained, (2)-( 10) can be solved to obtain the RR z3 MR transition wedge angle for 
the given experiment. 

(ii) Unlike the previous method, this relies more heavily on empirical considera- 
tions. However, it  is much easier to use, and much faster in obtaining practical results. 
Using the given surface roughness 6, one can calculate the value of Fy from the 
appropriate correlation (48a) or (48b). Then (2)-(10) can be solved to obtain the 
RR MR transition wedge angle. 

In order to provide an additional verification of the suggested models for 
calculating the RR + MR transition wedge angle for rough surfaces, additional 
experiments with e = 0.04 cm were performed. The recorded experimental data 
points are shown in figure 10. 

Using e = 0.04 and (48b), one obtains Fy = 0.60. The RR*MR transition line as 
obtained form the solution of (2)-(10) with Fy = 0.60, as well as the ‘detachment’ 
transition line, i.e. F7 = 0, are both shown in figure 10. It is clearly seen that the 
predictions of the present model are in fairly good agreement with the experimental 
results in the range 1 < Mi < 2. The poor agreement in the range Mi > 2, which has 
already been pointed out, can again be seen. 

The two dashed lines were obtained using (45) with zchar = 8h and 10A. Note that 
in this case, two values of y were obtained for each experiment - one appropriate to 
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50" 

4oo 

et,. 

30' 

20" 

10" 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
- Po 
p ,  

1 1.05 1.1 1.2 1.3 1.4 1.5 1.75 2.0 2.53.04.0 00 

Mi 

FIQWRE 10. Experimental results of the RR & MR transition over a rough wedge with 8 = 0.04 cm 
and the predictions of the present models, i.e. F, = 0.6 and the region of possible transition bounded 
by BA- lOA, where A is the mean free path of the flow ahead of the incident shock wave. 

I I I I 1 1 1 1  

xchar = 8h and the other to xChar = 10h. The two dashed lines represent the best 
second-order fit for the obtained value of y. The shaded area between these two 
dashed lines indicates the region in which the RR MR transition should occur for 
a surface with e = 0.04 cm. Unlike these two dashed lines the solid curves were 
calculated continuously for the entire range of incident-shock-wave Mach numbers. 

6. Conclusions 
A detailed investigation of our experimental results for the transition from regular 

to Mach reflection over rough surfaces enabled us to develop a model for predicting 
the RR z$ MR transition wedge angle. 

The model is based on displacing the boundary surface according to the mass 
displacement thickness and requiring that the flow behind the reflection point must 
adjust to the displaced surface. In order to obtain the displaced surface, an expression 
for the turbulent boundary-layer thickness of a compressible flow over a rough surface 
was developed. To the best of our knowledge such an expression has never been 
presented before. 

Using the expression for the boundary-layer thickness an appropriate expression 
for the mass displacement thickness 6* was derived. It was shown that the flow behind 
the reflection point must be parallel to the average slope of the displaced surface, i.e. 
tan-' S*/x, at a characteristic distance x = xchar, which was found to be of the order 
of eight to ten mean free paths. This value is also comparable to the incident shock- 
wave thickness. 
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It was also shown that the present model is limited to the range 1 < Mi < 2. Two 
possible reasons for this limitation were presented. One argues that the value of 
Mi = 2.068 might be critical since below it the shock-induced flow is subsonic and 
above it, i t  is supersonic. The other reason might arise from the neglect of the real-gas 
effects although, as shown by Ben-Dor & Glass (1979), vibrational relaxation starts 
at  about Mi = 2. It is also of interest to note that Reichenbach (1985) in a recent 
paper has conducted experiments over rough surfaces where the roughness shape waa 
different from the 'saw-tooth' shape used in our experimental study. In  spite of the 
different roughness shape, almost identical transition wedge angles were obtained for 
identical roughness heights. 

The financial assistance received from the US Army under Grant No. 
DAJA-45-83-C-0046 and from the Wolf Foundation are gratefully acknowledged. 

Appendix. The height of the surface roughness for a hydraulically smooth 
wedge 

In the following, the maximum surface-roughness height for which the surface can 
still be regarded as hydraulically smooth is calculated. The calculation is based on 
the assumptions given in the paper. 

The roughness characterizer G was defined (equation 19) as 

a=---, v* 8, 
V 

where V,, the shear velocity, is 

Inserting the expression for 7, (equation 39) into (A 2) results in 
v* = ( 7 W / d .  

Inserting (A 3) into (A 1) and rearranging, yields 

In  (A 4) the laminar sublayer thickness 8, is given for a compressible turbulent 
flow over a non-stationary rough surface. The compressibility of the gas is accounted 
for through Q (see (36)) and the roughness is accounted for through G. The 
boundary-layer thickness 8 is given in (40). 

For a typical incident-shock-wave Mach number in the range 1 < Mi < 2, i.e. 
Mi = 1.5, and for the value of G appropriate for a hydraulically smooth surface, 
i.e. G = 12.2468, as well as n = +, which is suggested for shock-tube experiments in 
this range of incident-sbock-wave Mach numbers by Martin (1957) and Glass & Hall 
(1959), one obtains 

8, = 0.00517 cm. 

As mentioned earlier, the surface can be considered as hydraulically smooth as long 
as B < 8,. Thus, the maximum surface roughness for which the surface can be 
regarded as hydraulically smooth is 

emax = 0.00517 cm. 
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It should be noted that this value is based on typical parameters at the centre of 
the incident-shock-wave Mach-number range 1 < Mi < 2. For values smaller or 
greater than Mi = 1.5, the value of emax might change slightly. 
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